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Abstract. Critical properties of the Calogero–Sutherland model ofBCN -type (BCN -CS

model) are studied. Using the asymptotic Bethe ansatz spectrum of theBCN -CS model, we
calculate finite-size corrections in the energy spectrum. Since theBCN -CS model does not
possess translational invariance, the finite-size spectrum acquires the contributions coming from
‘boundaries’. We show that the low-energy critical behaviour of the model is described by
c = 1 boundary conformal field theory. Thus the universality class of the model is identified as
a chiral Tomonaga–Luttinger liquid.

1. Introduction

The Calogero–Sutherland (CS) models [1–3] describe one-dimensional quantum many-body
systems with inverse-square long-range interactions. Among many variants of theCS model
[4], a class of models which are not translationally invariant has been found over the past
years [5]. In particular the so-calledCS model ofBCN -type (abbreviated as theBCN -CS

model hereafter) is the most general model withN interacting particles. TheBCN -CS model
is intimately related to the root system of typeBCN and invariant under the action of the
Weyl group of typeBN . Namely, the model is invariant under coordinate transformations

(q1, q2, . . . , qN) 7→ (ε1qσ(1), ε2qσ(2), . . . , εNqσ(N)) (1)

where (q1, q2, . . . , qN) ∈ RN denote the coordinates ofN particles,εj ∈ {±1} and σ is
an element of the symmetric group ofN letters. Roughly speaking, the Weyl group of
type BN consists of the ordinary exchange of particle coordinates and the sign change of
coordinates. As we will see below the latter is understood as the mirror image of particles
with respect to a boundary.

Recent works have made it clear that theBCN -CS model is relevant to one-dimensional
physics with boundaries. For instance, it was pointed out that the non-relativistic dynamics
of quantum sine–Gordon solitons in the presence of a boundary is described by theBCN -CS

model (with sinh interaction) [6]. This model is interesting in view of the quantum electric
transport in mesoscopic systems [7, 8]. The Haldane–Shastry model, which is the discrete
version of theCS model, with open boundary conditions can also be constructed by utilizing
the root system of typeBCN [9, 10]. We shall present further evidence for the relevance
of theBCN -CS model to our understanding of one-dimensional physics including boundary
effects.
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In this paper we will analyse the long-distance critical properties of theBCN -CS model.
Since the exact energy spectrum of the model is available [11], we may apply the method of
finite-size scaling developed in conformal field theory (CFT) to study the critical behaviour.
The same technique has already been employed when the critical properties of theCS

model ofAN−1-type were considered [12]. The universality class of theAN−1-CS model
is identified as a Tomonaga–Luttinger liquid which is equivalent toc = 1 GaussianCFT.
In what follows we will show that, in contrast to theAN−1-CS model, theBCN -CS model
exhibits the critical behaviour described byc = 1 CFT with boundaries [13]. Hence the
universality class will be found to be a chiral Tomonaga–Luttinger liquid [14].

In the next section we first introduce theBCN -CS model and review the energy spectrum
of the model obtained by using the asymptotic Bethe ansatz. In section 3 we consider
the thermodynamic properties. In section 4 the finite-size scaling analysis of the energy
spectrum is performed. Finally, in section 5, we discuss various critical exponents of
correlation functions.

2. The BCN -CS model

Let us write down the Hamiltonian of theBCN -CS model [5]. We put the system in finite
geometry with linear sizeL and impose periodic boundary conditions. The Hamiltonian is
then given by

H = −
N∑
j=1

∂2

∂q2
j

+ 2λ(λ− 1)
(π
L

)2 ∑
16j<k6N

{
1

sin2 π
L
(qj − qk)

+ 1

sin2 π
L
(qj + qk)

}

+λ1(λ1 + 2λ2 − 1)
(π
L

)2 N∑
j=1

1

sin2 π
L
qj

+ 4λ2(λ2 − 1)
(π
L

)2 N∑
j=1

1

sin2 π
L

2qj

(2)

whereλ, λ1 and λ2 are coupling constants which are assumed to be non-negative. It is
clearly seen that the Hamiltonian (2) is invariant under the action (1) of the Weyl group
of type BN . There exist several interaction terms which will need explanation. The term
1/ sin2(π/L)(qj + qk) expresses the two-body interaction between thej th particle and the
‘mirror image’ (we place a mirror at the originq = 0) of thekth particle (j 6= k). The term
1/ sin2(π/L)q2

j may be interpreted as the potential due toimpurity located at the origin.

The term 1/ sin2(π/L)2qj describes the interaction between thej th particle and its own
‘mirror image’. All these terms required by invariance under the action of the Weyl group
of type BN violate translational invariance. Therefore, the total momentum is not a good
quantum number for theBCN -CS model.

The Hamiltonian (2) can be cast into another form just by using the elementary identity
sin 2A = 2 sinA cosA. One obtains

H = −
N∑
j=1

∂2

∂q2
j

+ 2λ(λ− 1)
(π
L

)2 ∑
16j<k6N

{
1

sin2 π
L
(qj − qk)

+ 1

sin2 π
L
(qj + qk)

}

+µ(µ− 1)
(π
L

)2 N∑
j=1

1

sin2 π
L
qj

+ ν(ν − 1)
(π
L

)2 N∑
j=1

1

cos2 π
L
qj

(3)

whereµ = λ1 +λ2, ν = λ2. In this form of the Hamiltonian the term 1/ sin2(π/L)(qj +qk)
is regarded as the boundary potential as before, while the last two terms in (3) are regarded
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as the impurity potentials with the strength determined byµ and ν respectively. The
Hamiltonian (3) is suitable for our present considerations.

The eigenvalues of the Hamiltonian (3) of theBCN -CS model have been obtained by
one of the authors [11]†. The energy spectrum so obtained is shown to be reproduced
exactly with the use of the asymptotic Bethe ansatz (ABA) method [11]. Let us recall the
ABA formula for theBCN -CS model. First of all the total energy of the system takes the
form

EN =
N∑
j=1

kj
2 (4)

where pseudomomentakj satisfyk1 > k2 > · · · > kN > 0 and obey theABA equations

kjL = 2πIj + π(λ− 1)
N∑

l=1,l 6=j
{sgn(kj − kl)+ sgn(kj + kl)}

+π(µ− 1) sgn(kj )+ π(ν − 1) sgn(kj ) j = 1, . . . , N (5)

with sgn(x) = 1 for x > 0, = 0 for x = 0 and= −1 for x < 0. HereIj (j = 1, . . . , N)
are positive integers withI1 > I2 > · · · > IN > 0. These are quantum numbers which
characterize the excited states.

We emphasize here that, in contrast to theAN−1-CS model, the Fermi surface of the
BCN -CS model consists of a single point. This is due to the fact that pseudomomentakj
which are solutions to (5) are distributed only over the semi-infinite region. Therefore, in
view of the bosonization picture, it implies that the low-energy critical behaviour of the
BCN -CS model will be effectively described by a left (or right)-moving sector ofCFT. In
addition to this, we also notice that the form of our Bethe ansatz equations (5) is quite close
to that which appeared in studies of the nonlinear Schrödinger equation on the half line
[15, 16] as well as theXXZ model with open boundary conditions [17, 18]. The critical
behaviour observed in these models [15–18] is well described by boundaryCFT [13]. It is
inferred from these points that boundaryCFT will play a role in our study of theBCN -CS

model.
Finally we rewrite ourABA equation (5) for further convenience. As has already been

mentioned, all the pseudomomentakj are positive. However, one can perform a trick so that
kj takes values in(−∞,∞) as in the bulk system. To realize this let us defineI−j = −Ij ,
I0 = 0, k−j = −kj andk0 = 0 with j = 1, . . . , N , then we have

kj = 4π
1

2L
Ij + 2π(λ− 1)

1

2L

N∑
l=−N

sgn(kj − kl)

+π
L
(µ+ ν − 2) sgn(kj )− π

L
(λ− 1) sgn(2kj )− π

L
(λ− 1) sgn(kj ) (6)

wherej = −N,−N + 1, . . . , N . The last two terms in (6) arise since the summation in (5)
does not include the termsl = j and l = 0. Now the system turns out to have linear size
2L and the number of particles becomes 2N + 1. Note that the density of the system does
not change. This doubling trick is known to be efficient when studying one-dimensional
physics with boundaries [15–18].

† Precisely speaking, this reference treated the case withν = 0 (theBN -CS model). However, we can easily
obtain the formula for theBCN -CS model. The spectrum was also derived in [10].
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3. Thermodynamic properties

The purpose in this section is to discuss thermodynamics (see [19]) of theBCN -CS model.
Let us first consider the system at zero temperature. All the states inside the interval
[−kF, kF] are occupied, where the Fermi momentumkF is defined askF = max{kj }. The
thermodynamic limit is taken by 2L → ∞, 2N + 1 → ∞ with the density(2N + 1)/2L
fixed. As usual we define the density of states by

lim
L7→∞

1

2L(kj − kj+1)
= ρ(k) (7)

and the sum is converted into an integral

1

2L

N∑
j=−N

( ) 7→
∫ kF

−kF

dk ρ(k)( ). (8)

From (6), (7), (8) andd
dx sgn(x) = 2δ(x), it is shown that

1 = 4πρ(k)+ 4π(λ− 1)
∫ kF

−kF

dk′ δ(k − k′)ρ(k′)+ 2π

L
(µ+ ν − 2λ)δ(k) (9)

where the boundary effect manifests itself in the last term (∼ 1/L). Notice that even for
µ = ν = 0, it still modifies the equation. Upon taking the thermodynamic limit one can
neglect the boundary term. The resulting equation is the same as for theAN−1-CS model
[2]. Then it is immediate to get

ρ(k) = 1

4πλ
(10)

kF = 2πλd (11)

where we have putd = N/L. It is also straightforward to compute the ground-state energy,

E(0) =
N∑

j=−N
(k
(0)
j )2 = 2L

∫ kF

−kF

dk k2ρ(k) = 2L · ε(0) (12)

with ε(0) = 4π2λ2d3/3 in the 2L → ∞ limit.
It is not difficult to extend the above analysis to the finite temperature case. At finite

temperatures the pseudomomenta distribute over the infinite region(−∞,∞). One finds

1 = 4π(ρ(k)+ ρh(k))+ 4π(λ− 1)
∫ ∞

−∞
dk′ δ(k − k′)ρ(k′)+ 2π

L
(µ+ ν − 2λ)δ(k) (13)

whereρh(k) is the hole density. Let 2L → ∞, then we have

ρ(k)+ 1

λ
ρh(k) = 1

4πλ
. (14)

Now following the familiar procedure, we obtain the thermodynamic Bethe ansatz equation,

ε(k) = k2 − µc + (λ− 1)T log

{
1 + exp

(
− 1

T
ε(k)

)}
(15)

whereT is the temperature,µc is the chemical potential and the energy densityε(k) of
particles is defined by

ρ(k)

ρh(k)
= exp

(
− 1

T
ε(k)

)
. (16)
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Performing the low-temperature expansion of the free energyF(T ) which is given by

(F (T )− µc(2N + 1))/(2L) = − T

4π

∫ ∞

−∞
dk log

(
1 + exp

(
− 1

T
ε(k)

))
(17)

we have

F(T ) ' F(T = 0)− πT 2

6(4πλd)
. (18)

The second term in (18) is responsible for the linear specific heatC asT → 0. It is
well recognized that the coefficient inC is universal modulo the Fermi velocityvF which is
not universal [20]. In translationally invariant systems the Fermi velocity is determined by
the dispersion relation. In theBCN -CS model, however, one cannot rely on the dispersion
relation since the momentum is not a good quantum number. So, in order to determine
vF, we have to take another point of view. As we observed, equations (10), (11) and (14)
coincide with those obtained in theAN−1-CS model. Hence we may regard theAN−1-CS

model as the bulk counterpart of theBCN -CS model. Since theAN−1-CS model is described
in terms ofc = 1 CFT [12] we assume that the central charge for theBCN -CS model is also
given by c = 1. Then, comparingC obtained from (18) to the formulaC = πcT/(3vF)

[20] with c = 1 we findvF = 4πλd. We shall see in section 5 that the finite-size spectrum
is in fact in accord withc = 1 CFT.

4. Finite-size scaling analysis

In this section we perform the finite-size scaling analysis of the energy spectrum of the
BCN -CS model. To begin with, we summarize several fundamental formulae in boundary
CFT [13] which we will need to analyse the energy spectrum. Let us first recapitulate the
finite-size scaling form of the ground-state energy predicted by conformal invariance under
free boundary conditions[20]

E(0) = Lε(0) + 2f − πvF

24L
c (19)

where ε(0) and f are, respectively, the bulk limits of the ground-state energy density
and the boundary energy,vF is the velocity of the elementary excitations. The Virasoro
central chargec which specifies the universality class of the system appears as the universal
amplitude of the 1/L term in (19).

From the scaling behaviour of the excitation energy one can read off the boundary
critical exponentsxb [13]. This exponentxb governs the power-law decay (parallel to the
boundary surface) of a two-point function. Consider a critical system on the half-plane
{(y, τ ) ∈ R>0 × R} with a surface aty = 0. (y is the perpendicular distance from a point
(y, τ ) to the boundary andτ means the imaginary time.) LetO(y, τ ) be a local operator.
We consider its two-point correlation functionG(y1, y2, τ ) = 〈O(y1, τ1)O(y2, τ2)〉, which
is a function ofτ = τ1 − τ2 because of translational invariance along the surface. For
|τ | � y1, y2, G has the asymptotic form,

G(y1, y2, τ ) ∼ 1

τ 2xb
. (20)

To evaluatexb we have to examine the scaling law

E − E(0) = πvF

L
xb (21)

with E being the excitation energy. It usually happens that the value ofxb is distinct from
that of the bulk exponent for certain scaling operators. In terms ofCFT, the bulk exponent
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is expressed as the sum of left and right conformal weights, while the boundary exponent
is equal to the left (or right) conformal weight.

Let us now turn to theBCN -CS model. It is convenient to manipulate theABA equations
(5) directly. We can easily solve (5) to obtain

kj = 2π

L
[Ij − (N − j + 1)] + k

(0)
j j = 1, . . . , N (22)

where

k
(0)
j = 2π

L

[
λ(N − j)+ µ+ ν

2

]
. (23)

The ground state is thus specified by the quantum numbersI
(0)
j = N − j + 1 (j =

1, . . . , N), from which we get the Fermi pointI (0)1 = N and the Fermi momentum
kF = 2πλN/L+ π(µ+ ν − 2λ)/L. The ground-state energy is then obtained as

E
(0)
N =

N∑
j=1

(k
(0)
j )2

=
(

2π

L

)2

[ 1
3λN

3 + 1
2λ(µ+ ν − λ)N2 + 1

12(3(µ+ ν − λ)2 − λ2)N ]. (24)

We make a power expansion of (24) with respect to 1/L while keeping the particle density
d = N/L fixed. The result reads

E
(0)
N = ε(0)L+ 2f + πvF

L
λ(1Nb)

2 − πvF

12L
λ (25)

wheref = π2λ(µ+ ν − λ)d2 and

1Nb = µ+ ν − λ

2λ
. (26)

In (25) there appear no higher-order terms withL−m(m > 2). Note also the symmetric
dependence off and1Nb on µ, ν.

There are several points which should be noticed in (25). First of all, besides the
thermodynamic energy densityε(0) already computed in (12), one finds theboundary energy
2f in the term of orderL0, which is due to the absence of translational invariance in
the system. The next order corrections proportional to 1/L turn out to provide valuable
information on ‘boundary effects’. To see this, let us proceed a bit more carefully by using
the decomposition of the 1/L contributions into the last two terms of (25). We first recall
that the size-dependence of the interaction is necessarily introduced for 1/r2 systems, as
seen in (3), when dealing with interacting particles in finite geometry. This gives rise
to non-universal 1/L corrections to the ground-state energy in addition to the universal
one, as observed in theAN−1-CS model [12]. In (25), therefore, we think that the term
−πvFλ/(12L) suffers from such non-universal contaminations which, in direct comparison
with (19), yield the wrong value for the central charge.

The other 1/L correction term,πvFλ(1Nb)
2/L, is more interesting and understood as

the ‘boundary effect’ which consists of two kinds of contribution. As seen from (6), when
we convert theBCN system to the chiral system by using a trick of mirror image, we are
left with particles moving only in one direction feeling theboundary potentialdepending on
λ, in addition to theimpurity potentialdepending onµ andν. These two types of scattering
effects are combined into a quadratic form with respect to the ‘fractional quantum number’
1Nb depending on bothµ + ν and λ. Note that the quantum number1Nb physically
represents the phase shift due to the scattering by the impurity and boundary potentials.
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Thus our ground state which has the energyE
(0)
N is considered as the phase-shifted ground

state [21]. If we imagine a hypothetical system which does not include these boundary
contributions, the corresponding ground-state energyẼ

(0)
N is written as

Ẽ
(0)
N = E

(0)
N − 2πvF

L

λ

2
(1Nb)

2. (27)

Having discussed the ground-state energy in detail, we next wish to calculate the finite-
size corrections to the excited states. Looking at theABA equations (5) let us create an
excited state by adding1N particles to the ground-state configuration. In this case, we
have the pseudomomenta

kj = 2π

L

[
λ(N +1N − j)+ µ+ ν

2

]
(28)

from which we immediately obtain the finite-size corrections to leading order in 1/L,

E
(0)
N+1N − E

(0)
N ' µ(0)c 1N + π

L
[4πλ(µ+ ν − λ)d1N + 4πλ2d(1N)2]

= µ(0)c 1N + πvF

L
λ(1N +1Nb)

2 − πvF

L
λ(1Nb)

2 (29)

whereµ(0)c = ∂ε(0)/∂d = kF
2 is the chemical potential. Note that this expression for the

finite-size spectrum is essentially the same as that derived for the charge sector in the Kondo
problem (see (49) in [22]). If we redefineE(0)N by E(0)N − µ(0)c N , we find

E
(0)
N+1N − Ẽ

(0)
N = 2πvF

L

λ

2
(1N +1Nb)

2. (30)

Since any excitations which carry currents with large momentum transfer are barred due to
the absence of translational invariance in theBCN -CS model, the remaining possible type
of low-energy excitations are provided by particle–hole excitations labelled by non-negative
integersn. The corresponding energy is simply obtained by adding 2πvFn/L to (30). Hence
we have

E − Ẽ
(0)
N = 2πvF

L

[
λ

2
(1N +1Nb)

2 + n

]
(31)

whereE denotes the energy of the excited state specified by(1N,1Nb, n). In the next
section we argue that our result (31) is in accordance with the scaling law inc = 1 boundary
CFT.

5. Correlation functions

Now that we have evaluated the finite-size corrections it is possible to read off various
critical exponents using the scaling relation (21). When comparing our result (31) with (21)
we have to replaceL with 2L sinceL has been defined as the periodic length of the system.
Bearing this in mind let us take an operatorψb which corresponds to the phase-shifted
ground state. This operator can be assumed to be the boundary changing operator [21].
With this point of view, the phase-shifted ground state is an excited state relative toẼ

(0)
N in

(27). The scaling dimension ofψb is obtained as

xψb = L

πvF
(E

(0)
N − Ẽ

(0)
N ) = 1

2ξ2
(1Nb)

2 (32)

where we have putξ = 1/
√
λ, ζ = 1/

√
µ+ ν, and hence1Nb = (ξ2 − ζ 2)/(2ζ 2).
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We next consider an operatorφ which induces the particle number change as well as
the particle–hole excitation in the phase-shifted ground state. From (31) and (21) we have

xφ = L

πvF
(E − Ẽ

(0)
N ) = 1

2ξ2
(1̂N)2 + n (33)

where

1̂N = 1N +1Nb. (34)

Scaling dimensions (32) and (33) take the form of conformal weights characteristic of
c = 1 CFT. The radiusR of a compactifiedc = 1 free boson is taken to beR = ξ . Let us
concentrate on the self-dual pointR = 1/

√
2 (i.e.λ = 2) where the symmetry is known to

be enhanced to the level-1SU(2) Kac–Moody algebra. In theBCN -CS model we have the
other continuous parametersµ, ν which should also be tuned to achieve theSU(2) point.
It turns out thatµ + ν = 0, 1, 2, 3 and 4 withλ = 2 are the desired points. This follows
from the following observations: whenµ+ ν = 2 we have1Nb = 0 and hence

xφ = 1
4(21N)

2 + n (35)

which is the conformal weight for the spin-0 irreducible representation of the level-1SU(2)
Kac–Moody algebra. Whenµ+ ν = 4 or 0 we get1Nb = ± 1

2 and thus

xφ = 1
4(21N + 1)2 + n (36)

which is the conformal weight of spin-1
2 irreducible representation. Whenµ+ ν = 3 or 1

we have1Nb = ± 1
4, thereby

xφ = 1
16(41N + 1)2 + n. (37)

This is the conformal weight for the unique irreducible representation of the level-1 twisted
SU(2) Kac–Moody algebra [23]. The highest-weight state withxφ = 1

16 is a twist field in
c = 1 CFT. SeveralSU(2) points identified in [10] are in agreement with our result. Thus
we conclude that the low-energy critical behaviour of theBCN -CS model is described in
terms of c = 1 boundaryCFT, i.e. the universality class of a chiral Tomonaga–Luttinger
liquid.

Further considerations on the low-energy critical properties of theBCN -CSmodel require
a clear distinction between two pictures corresponding to two possible sets of quantum
numbers. One is a set of quantum numbers(1N,1Nb, n) and the other is a set of(1̂N, n)
where 1̂N is regarded as the ordinary particle number change in (33) (forgetting about
1Nb in (34)). The picture based on the set(1N,1Nb, n) is relevant when describing the
long-time asymptotic behaviour of the system in which we suddenly turn on the boundary
effects in the ground state. The x-ray absorption singularity in the Kondo problem, for
instance, is considered in this type of picture [21, 22]. The boundary changing operatorψb

is described in this picture with(1N,1Nb, n) = (0,1Nb, 0). If we use the set(1̂N, n)
instead, our picture is independent ofζ and adequate to compute the critical exponents of
ordinary correlation functions with boundary effects.

Let us consider the one-particle Green function in the above two pictures. Let
(1N,1Nb, n) = (1,1Nb, 0) in the first picture. This choice of quantum numbers
determines the long-time asymptotic behaviour of the field correlator (the one-particle Green
function) when boundary potentials are turned on atτ = 0,

〈9†(τ )9(0)〉sudden∼ 1

τ 2xG
(38)
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where

xG = 1

2ξ2
(1 +1Nb)

2 = 1

8ξ2

(
1 + ξ2

ζ 2

)2

. (39)

Here 〈· · ·〉sudden stands for the expectation value when the boundary potential is suddenly
switched on. On the other hand, if we let(1̂N, n) = (1, 0) in the second picture, the field
correlator takes the form

〈9†(τ )9(0)〉 ∼ 1

τ 2xg
(40)

where

xg = 1

2ξ2
(41)

which describes the ordinary one-particle Green function. In this case, the boundary critical
exponentxg linearly depends onλ. In contrast to these Green functions, the density–density
correlation function is controlled by the excitations which do not change the number of
particles. Hence, it should have the long-time asymptotic form

〈ρ(τ)ρ(0)〉 ∼ 1

τ 2
(42)

which follows by taking the quantum number(1̂N, n) = (0, 1) in (33). Note that there do
not appear anomalous exponents in this correlator. One can easily see that this is also the
case for sub-leading termsτ−2k in which the quantum number is chosen as(1̂N, n) = (0, k).
This fact will be confirmed shortly in the following.

We now compare our result with the explicit calculations of the dynamical correlation
function. In the caseλ = 1, ν = 0 withµ arbitrary which corresponds to the non-interacting
system, the dynamical density–density correlation function for theBCN -CS model has been
obtained by Maĉedo [24] (see also [25]). In the thermodynamic limit, the density–density
correlation functionG(y1, y2, τ ) has the form

G(y1, y2, τ ) = π4

4
y1y2

∫ ∞

1
du1 exp(− 1

2π
2τu1)Jµ− 1

2
(πy1

√
u1)Jµ− 1

2
(πy2

√
u1)

×
∫ 1

0
du2 exp( 1

2π
2τu2)Jµ− 1

2
(πy1

√
u2)Jµ− 1

2
(πy2

√
u2) (43)

where Jν(z) is the Bessel function andτ is the imaginary time. Whenµ = 1
2 + m

(m = 0, 1, . . .) it is not difficult to evaluate the large-τ asymptotic behaviour by making
use of the series expansion ofJm(z). After some algebra we obtain

G(y1, y2, τ ) =
∞∑
k=1

Ak(yj )

(
1

τ

)2k

+
∞∑
l=0

Bl(yj )

(
1

τ

)l+m+2

exp(− 1
2π

2τ) (44)

whereAk(yj ), Bl(yj ) are some functions. Asτ → ∞ with y1, y2 fixed, the second term
vanishes exponentially, yielding

G(y1, y2, τ ) ' A1

τ 2
+ A2

τ 4
+ A3

τ 6
+ · · · . (45)

Notice that the exponents are independent ofm (i.e. µ). The density–density correlation
function is considered in the picture based on(1̂N, n). Then we see from (33) that all
these exponents are precisely understood in terms of the excitations(1̂N, n) = (0, k). This
means that the correlation functionG is dominated by the particle–hole excitations, and
hence there is no dependence onλ. Therefore the result (45) completely agrees with our
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prediction byCFT analysis. We are thus led to conclude that the power-law decay in (45)
is universal with respect toλ (but with ν = 0 fixed) though (45) is verified atλ = 1. We
stress that this remarkable feature in the density–density correlation function is typical of
chiral Tomonaga–Luttinger liquids [14].

Finally we briefly mention possible applications to the (chiral) random matrix theory
[26]. Let us recall theBN Calogero–Moser model (BN -CM model) in the rational form [5],

HCM = −
N∑
j=1

∂2

∂x2
j

+ 2λ(λ− 1)
∑

16j<k6N

{
1

(xj − xk)2
+ 1

(xj + xk)2

}

+µ(µ− 1)
N∑
j=1

1

x2
j

+ ω2
N∑
j=1

x2
j (46)

with ω > 0. In the thermodynamic limit, this model belongs to the same universality class
as theBN -CS model which is equivalent to theBCN -CS model atν = 0. The ground-state
wavefunction for theBN -CM model takes the form of Jastrow type [5]

9(0)(x1, x2, . . . , xN) = N
∏

16j<k6N
|x2
j − x2

k |λ
N∏
l=1

|x2
l |µ/2 exp(− 1

2ωx
2
l ) (47)

whereN is a calculable normalization constant. Notice that9(0)(x1, x2, . . . , xN) depends
only on the x2

j ’s. Then, introducing new variableszj = x2
j , one should note that

|9(0)(x1, x2, . . . , xN)|2 is identical to the probability distribution function for the eigenvalues
zj of the Laguerre ensemble whenλ = 1

2, 1 and 2 (with appropriate values ofµ and
ω) corresponding to the ensembles of orthogonal, unitary and symplectic types [26],
respectively. Therefore, it will be very interesting if the long-time asymptotic behaviour of
correlation functions in theBN -CM model obtained in the present work is directly compared
with the results in the Laguerre random matrix theory.

In summary, we have investigated boundary critical phenomena in theBCN -CS model.
The boundary effects come from both the impurity potentials and interactions between
particles and ‘image’ particles. Making use of boundaryCFT, we have obtained boundary
critical exponents, and clarified the critical properties of theBCN -CS model in terms of
chiral Tomonaga–Luttinger liquids.
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[20] Blöte H W, Cardy J L and Nightingale M P 1986Phys. Rev. Lett.56 742

Affleck I 1986 Phys. Rev. Lett.56 746
[21] Affleck I and Ludwig A W W 1994J. Phys. A: Math. Gen.27 5375
[22] Fujimoto S, Kawakami N and Yang S K 1994Phys. Rev.B 50 1046
[23] Rittenberg V and Scwimmer A 1987Phys. Lett.195B 135

Ravanini F and Yang S-K 1988Nucl. Phys.B 295 262
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